
Static landscape features predict uplift locations 
for soaring birds across Europe

Martina Scacco, Andrea Flack, Olivier Duriez, Martin Wikelski, Kamran Saf

SUPPLEMENTARY MATERIAL

List of content

S1 – Segmentation of flight behaviour. Containing supporting fgures (Fig. S1.1,

Fig. S1.2 and Fig. S1.3).

S2 – Environmental  variables.  Containing more details  about  the procedure we

used to handle the static environmental  layers; Tab. S2.1 table with environmental

variables sources; Tab. S2.2 table containing the old legend and the reclassifed legend

of the Corine Land Cover classes.

S3 – Uplift suitability model.  Containing additional fgures (Fig. S3.1, S3.2, S3.3)

and tables (Tab. S3.1) supporting the results. It also contains the detailed procedure

and results of the random forest tuning and prevalence test.

S4 – Uplift intensity model.  Containing the output of the three GAMs (Tab. S4.1)

and supporting fgure (Fig. S4.1).

S5 -  Static  energy landscape. Containing  the  output  table  of  the  linear  mixed

model (Tab. S5.1).

1 Scacco et al.



Energy landscape for soaring birds

S1 – Segmentation of the flight behaviour

Supporting figures for segmentation

Figure S1.1 - Characterization of the different flight behavioural classes according to different
flight parameters: cross-country speed (A), ground speed (B), vertical speed (C) and absolute
turning angle (D).
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Figure S1.2 - Example of segmentation of the flight behaviour detected from the ACC data of
one individual of white stork. Figure (A) shows the different empirical values of the average
ODBA among the three activity levels. Figure (B) shows how the three activity categories are
different in terms of dynamic body acceleration measured on the three ACC axes (plot’s x axis)
and on the Z axis (plot’s y axis).
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Figure S1.3 -  Time allocation among flight behaviours. The barplots show the proportion of
time  white  storks  spent  performing  different  flight  behaviours  (proportions  obtained  by
cumulating the time spent by all individuals on the different behaviours). (A) Proportion of time
(classifed using GPS locations) spent soaring (circular or linear soaring, red bar) or using other
flight types (grey bar) calculated relative to the duration of all classifed GPS segments (748 h).
(B) Proportion of time (classifed using ACC recordings) spent flapping (blue bar) or using other
flight  types  (grey  bar)  relative  to  the  duration  of  all  classifed  ACC  bursts  (24.3 h).  The
information shown in fgures (A)  and (B)  cannot be directly compared due to  the different
sampling schedules of GPS and ACC.
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S2 – Environmental variables

Static environmental variables

For descriptive purposes we group the environmental layers in two categories - surface

features and land cover.  All environmental layers are publicly available (Tab. S2.1).

Surface features.  In order to characterize the surface features we used the publicly

available elevation map EU-DEM (based on SRTM and ASTER Global Digital Elevation

Model) [1] and we computed slope, aspect and roughness (topographic heterogeneity)

using the R package raster [2]. The native spatial granularity of the elevation map is 1

arcsec (about 25 m near the Equator) but we aggregated the raster cells to match the

100 m resolution of the land cover map. Slope and aspect were computed according to

Horn [3]. The roughness was calculated as the difference between the maximum and

the minimum value of a cell and its 8 surrounding cells. Unevenness in the aspect, the

slope and the elevation (this last  one also called Topographic Position Index) were

computed as the difference between the value of a cell and the mean value of its 8

surrounding cells. Highly correlated layers were excluded from the model  to avoid

multicollinearity (this was the case of the slope because of the high correlation with

the roughness).

Land  cover. We  characterized  the  land  cover  using  the  Normalized  Difference

Vegetation Index (NDVI), CORINE Land Cover categories (CLC) and the Global Urban

Footprint (GUF). The NDVI product is available as Spectral Indices product of Landsat 7

[4] with a spatial  granularity of 30 m; the raster cells  were resized to 100 m. We

computed a summer (from June 1st to September 30th) NDVI composite for 2014 to

match the temporal resolution of our tracking data. For the composite we extracted

the higher monthly NDVI value of each cell and we averaged the resulting maximum

monthly values. Extracting the maximum monthly value instead of the average value

allowed us to avoid low values of NDVI that could be associated with errors in the

5 Scacco et al.



Energy landscape for soaring birds

cloud  cover  mask  of  the  Landsat  NDVI  product.  The  CORINE  Land  Cover  2012  is

available from the European Environmental Agency [5] with a native spatial resolution

of 100 m. We used the level 3 categories with few modifcations (Table S2.2).  The

Global Urban Footprint is a binary thematic map with values of 1 for built-up areas

(man-made building structures) and 0 for non-built-up areas. The dataset is available

with a native spatial resolution of 0.4 arc seconds (about 12 m near the Equator) [6].

We resized  the  raster  cells  to  100  m computing  the  mean for  each  9  by  9  cells

(proportion of built-up areas/100 m cell).

Table S2.1 - Environmental data sources.

Environmental layer source

Digital elevation model (DEM)
EU-DEM  (based  on  SRTM  and  ASTER  Global
Digital  Elevation  Model)  from  European
Environmental Agency [1].

Roughness Derived from DEM

Topographic Position Index Derived from DEM

Slope Derived from DEM

Slope unevenness Derived from Slope

Aspect Derived from DEM

Aspect unevenness Derived from Aspect

Normalized Difference Vegetation Index (NDVI)
Landsat 7 Spectral Indices [4]. Available from

U.S. Geological Service Bulk Download [9].
Data period June-September 2014.

CORINE Land Cover (CLC) CLC 2012 from European Environmental
Agency [5].

Global urban footprint (GUF) Produced by Deutschen Zentrums für Luft und
Raumfahrt, 2011 [6].

Thermal uplift potential
Movebank.org – Env-Data annotation service

[7] based on ECMWF weather reanalysis,
computed following Bohrer et al. [8].

Orographic uplift potential

Movebank.org – Env-Data annotation service
[7] based on ECMWF weather reanalysis and
ASTER DEM, computed following Bohrer et al.

[8].
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Table S2.2: Original and reclassifed legend of the CORINE Land Cover categories.

Reclassified categories Reclassified code CLC 2012 Legend

Dumps 1 8
Artifcial vegetated areas 2 10-11
Arable lands 3 12-14
Permanent crops 4 15-17
Pastures 5 18
Heterogeneous agricultural areas 6 19-22
Forest 7 23-25
Shrubs 8 26-29
Glaciers, snow 9 34
Inland wetlands, marshes 10 35-36
Marine wetlands, salines, inter-tidal flats 11 37-39
Water courses, rivers 12 40
Water bodies, lakes 13 41
Coastal lagoons, estuaries 14 42-43
Sea, ocean 15 44
Urban areas 16 1-6,9
Bare soil 17 7,30-33
No data or unclassifed NA 48-50,255
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S3 –  Uplift suitability model

Model tuning and evaluation

Different parameter values can be modifed by the user in order to tune the random

forest algorithm and improve its performances (such as number of variables chosen at

each split, forest size and tree depth). In addition, in the feld of species distribution

modelling, the proportion of data belonging to different classes in the dataset used to

train the model has an important effect on different accuracy measures on the model

output of different machine learning algorithms [10,11]. For these reasons, we tuned

the static and the dynamic landscape models, choosing the optimal values of mtry

(number of variables chosen at each split) with respect to Out-of-Bag error estimate,

using the package’s inbuilt function tuneRF. Additionally, we tried different values of

ratio soaring to flapping locations (named hereafter prevalence, for similarity with the

defnition used in species distribution modelling). 

The role of prevalence on the model performances is controversial. Different studies

suggested that certain accuracy measures (such as kappa) are sensitive to prevalence

and that prevalence should be taken into account when evaluating the model  [12,13],

but few unclear suggestions have been made about whether the number of presences

and absences should be manipulated in order to maximize the model performances

[10,11,13].  This  lack  of  clarity  is  probably  due  to  multiple  reasons,  such  as  the

algorithm used, the difference between using real absences or pseudo-absences, the

difficulty  to  differentiate  between  biases  in  the  measures  used  to  evaluate  the

performance and biases in the performances itself, and fnally to the uncertain effect

of data manipulation on the ecological interpretation of the result (for instance when

dealing with rare and specialist species versus abundant and generalist ones, and the

need to compare the predicted prevalence with the observed prevalence).  For this

reasons we decided not to manipulate the prevalence in our analysis but to perform a
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prevalence manipulation test. The prevalence manipulation test was performed on 100

trees.  Before  running  the  model  with  different  prevalence  values,  the  complete

dataset was randomly partitioned in test set (20% of the data) and train set (80% of

the  data),  separately  for  soaring  (presences)  and  flapping  (absences)  locations  in

order to maintain the same ratio of presences to absences in both the original dataset

and the test set; from the train set we then manipulated the number of presences to

meet the values of  prevalence (n.  presences/n.  absences) we wanted to test.  The

same data partitioning procedure was repeated 10 times. The data partition used to

test  the  model  was  separated  from  the  training  set  before  manipulating  the

prevalence in the training set; in this way we could ensure a constant size for the test

set during the evaluation of each prevalence value. During the models’ evaluation we

considered  the  following  accuracy  measures:  AUC  or  area  under  the  ROC  curve,

sensitivity  and  specifcity;  sensitivity  and  specifcity  are  threshold  dependent

measures and the chosen values correspond to a threshold that maximize the sum of

specifcity and sensitivity (True Skill Statistics or TSS). 

The results of the tuning procedure showed an increase in the model accuracy (AUC

and TSS) with increasing prevalence. Sensitivity and specifcity showed variable values

at different values of prevalence, but they both showed a slight positive trend and the

difference between the two slightly decreased, with increasing prevalence (Fig. S3.1).

In contrast, the threshold that maximized the TSS increased, being around 0.5 with a

prevalence equal to 2, and around 0.9 with a prevalence of 12, which is in agreement

with  the fact  that  the best  performances  in  our  model  were  associated with  high

thresholds. This didn’t affect our model accuracy, but its robustness. In fact, all models

including  the  original  presence/absence  ratio  (12.66),  the  threshold  at  which  the

number  of  flapping  locations  correctly  classifed  matched  the  number  of  soaring

locations correctly classifed was really close to 1, between 0.9 and 0.95; a threshold

9 Scacco et al.



Energy landscape for soaring birds

of 0.9 favoured the identifcation of soaring (with higher commission rate) whereas a

threshold of 0.95 favoured the identifcation of flapping (with higher omission rate).

This means that this model prediction, although accurate, can be considered sensitive

compared to a prediction obtained with a lower threshold, and a small change in the

threshold leads to really different predicted results. For this reason, if the sample size

of the least represented class allows it, we recommend the use of balanced classes in

species distribution and habitat suitability modelling, by randomly subsampling the

more represented class to about twice the size of the least represented class, to be

able to choose a more centered threshold and increase model robustness. 

Figure S3.1 - Prevalence test. Effect of different prevalence values (ratio soaring to flapping
locations) on different accuracy measures (A), and on the threshold that has to be chosen in
order to maximize True Skill Statistics, calculated as (Sensitivity + Specifcity) – 1 (B).
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Table S3.1 - Random forest evaluation of the three uplift suitability models, based on the test
set and averaged across the ten cross-validations.

Table  S3.1  A  -  Static  uplift  suitability  model,  based  only  on  static  features  (AUC±sd  =
0.851±0.022).

Threshold Sensitivity Specifcity Commission Error Omission Error TSS

0 1 (0) 0.001 (0.003) 0.999 (0.003) 0 (0) 0.001 (0.003)
0.05 1 (0) 0.061 (0.022) 0.939 (0.022) 0 (0) 0.061 (0.022)
0.1 1 (0) 0.097 (0.033) 0.903 (0.033) 0 (0) 0.097 (0.033)
0.15 1 (0) 0.122 (0.025) 0.878 (0.025) 0 (0) 0.122 (0.025)
0.2 1 (0) 0.162 (0.044) 0.838 (0.044) 0 (0) 0.162 (0.044)
0.25 1 (0) 0.185 (0.05) 0.815 (0.05) 0 (0) 0.185 (0.05)
0.3 1 (0) 0.187 (0.049) 0.813 (0.049) 0 (0) 0.187 (0.049)
0.35 1 (0) 0.211 (0.047) 0.789 (0.047) 0 (0) 0.21 (0.047)
0.4 0.999 (0.001) 0.257 (0.046) 0.743 (0.046) 0.001 (0.001) 0.255 (0.046)
0.45 0.997 (0.002) 0.341 (0.054) 0.659 (0.054) 0.003 (0.002) 0.338 (0.054)
0.5 0.997 (0.002) 0.356 (0.059) 0.644 (0.059) 0.003 (0.002) 0.352 (0.059)
0.55 0.996 (0.002) 0.36 (0.06) 0.64 (0.06) 0.004 (0.002) 0.356 (0.06)
0.6 0.994 (0.002) 0.367 (0.058) 0.633 (0.058) 0.006 (0.002) 0.361 (0.058)
0.65 0.992 (0.002) 0.376 (0.058) 0.624 (0.058) 0.008 (0.002) 0.368 (0.058)
0.7 0.988 (0.003) 0.393 (0.056) 0.607 (0.056) 0.012 (0.003) 0.38 (0.056)
0.75 0.977 (0.005) 0.414 (0.054) 0.586 (0.054) 0.023 (0.005) 0.391 (0.054)
0.8 0.956 (0.003) 0.468 (0.06) 0.532 (0.06) 0.044 (0.003) 0.424 (0.06)
0.85 0.914 (0.006) 0.55 (0.051) 0.45 (0.051) 0.086 (0.006) 0.464 (0.051)
0.9 0.827 (0.009) 0.685 (0.048) 0.315 (0.048) 0.173 (0.009) 0.512 (0.045)
0.95 0.625 (0.014) 0.862 (0.041) 0.138 (0.041) 0.375 (0.014) 0.487 (0.036)
1 0.113 (0.01) 0.991 (0.009) 0.009 (0.009) 0.887 (0.01) 0.103 (0.011)
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Table S3.1 B - Dynamic uplift suitability model, based only on thermal and orographic uplift 
potentials (AUC±sd = 0.695±0.024).

Threshold Sensitivity Specifcity Commission Error Omission Error TSS

0 1 (0) 0 (0) 1 (0) 0 (0) 0 (0)
0.05 1 (0) 0 (0) 1 (0) 0 (0) 0 (0)
0.1 1 (0) 0 (0) 1 (0) 0 (0) 0 (0)
0.15 1 (0) 0.002 (0.004) 0.998 (0.004) 0 (0) 0.002 (0.004)
0.2 1 (0) 0.004 (0.004) 0.996 (0.004) 0 (0) 0.004 (0.004)
0.25 1 (0) 0.007 (0.005) 0.993 (0.005) 0 (0) 0.007 (0.005)
0.3 1 (0) 0.018 (0.012) 0.982 (0.012) 0 (0) 0.018 (0.012)
0.35 1 (0) 0.025 (0.016) 0.975 (0.016) 0 (0) 0.025 (0.016)
0.4 0.999 (0) 0.03 (0.016) 0.97 (0.016) 0.001 (0) 0.03 (0.016)
0.45 0.999 (0.001) 0.039 (0.013) 0.961 (0.013) 0.001 (0.001) 0.039 (0.013)
0.5 0.998 (0) 0.053 (0.008) 0.947 (0.008) 0.002 (0) 0.051 (0.008)
0.55 0.996 (0.001) 0.069 (0.015) 0.931 (0.015) 0.004 (0.001) 0.065 (0.014)
0.6 0.994 (0.001) 0.096 (0.016) 0.904 (0.016) 0.006 (0.001) 0.09 (0.017)
0.65 0.99 (0.002) 0.127 (0.017) 0.873 (0.017) 0.01 (0.002) 0.117 (0.018)
0.7 0.984 (0.003) 0.157 (0.026) 0.843 (0.026) 0.016 (0.003) 0.141 (0.026)
0.75 0.973 (0.005) 0.203 (0.033) 0.797 (0.033) 0.027 (0.005) 0.176 (0.033)
0.8 0.954 (0.006) 0.276 (0.039) 0.724 (0.039) 0.046 (0.006) 0.23 (0.04)
0.85 0.919 (0.009) 0.358 (0.047) 0.642 (0.047) 0.081 (0.009) 0.277 (0.049)
0.9 0.844 (0.008) 0.487 (0.045) 0.513 (0.045) 0.156 (0.008) 0.331 (0.045)
0.95 0.459 (0.018) 0.737 (0.033) 0.263 (0.033) 0.541 (0.018) 0.196 (0.039)

1 0.026 (0.005) 0.985 (0.014) 0.015 (0.014) 0.974 (0.005) 0.011 (0.015)
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Table S3.1 C - Combined uplift suitability model, based on both static and dynamic predictors 
(AUC±sd =  0.862±0.016).

Threshold Sensitivity Specifcity Commission Error Omission Error TSS

0 1 (0) 0.001 (0.003) 0.999 (0.003) 0 (0) 0.001 (0.003)
0.05 1 (0) 0.051 (0.019) 0.949 (0.019) 0 (0) 0.051 (0.019)
0.1 1 (0) 0.075 (0.032) 0.925 (0.032) 0 (0) 0.075 (0.032)
0.15 1 (0) 0.107 (0.027) 0.893 (0.027) 0 (0) 0.106 (0.027)
0.2 1 (0) 0.133 (0.024) 0.867 (0.024) 0 (0) 0.133 (0.024)
0.25 1 (0) 0.157 (0.02) 0.843 (0.02) 0 (0) 0.157 (0.02)
0.3 1 (0) 0.169 (0.024) 0.831 (0.024) 0 (0) 0.169 (0.024)
0.35 1 (0) 0.192 (0.023) 0.808 (0.023) 0 (0) 0.191 (0.023)
0.4 0.999 (0) 0.234 (0.03) 0.766 (0.03) 0.001 (0) 0.234 (0.03)
0.45 0.999 (0.001) 0.287 (0.041) 0.713 (0.041) 0.001 (0.001) 0.285 (0.04)
0.5 0.998 (0.001) 0.319 (0.032) 0.681 (0.032) 0.002 (0.001) 0.317 (0.032)
0.55 0.998 (0.001) 0.341 (0.037) 0.659 (0.037) 0.002 (0.001) 0.339 (0.036)
0.6 0.997 (0.001) 0.356 (0.034) 0.644 (0.034) 0.003 (0.001) 0.352 (0.033)
0.65 0.995 (0.001) 0.375 (0.037) 0.625 (0.037) 0.005 (0.001) 0.37 (0.036)
0.7 0.992 (0.002) 0.392 (0.038) 0.608 (0.038) 0.008 (0.002) 0.384 (0.038)
0.75 0.983 (0.003) 0.417 (0.039) 0.583 (0.039) 0.017 (0.003) 0.4 (0.038)
0.8 0.962 (0.005) 0.471 (0.036) 0.529 (0.036) 0.038 (0.005) 0.433 (0.033)
0.85 0.92 (0.008) 0.557 (0.038) 0.443 (0.038) 0.08 (0.008) 0.477 (0.035)
0.9 0.829 (0.014) 0.706 (0.036) 0.294 (0.036) 0.171 (0.014) 0.535 (0.036)
0.95 0.609 (0.014) 0.878 (0.032) 0.122 (0.032) 0.391 (0.014) 0.488 (0.022)
1 0.055 (0.004) 1 (0) 0 (0) 0.945 (0.004) 0.055 (0.004)
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Supporting figures for the models’ output

Figure S3.2 -  Accuracy of  the  three uplift  suitability  models,  static  (A),  dynamic  (B)  and
combined (C),  in terms of  sensitivity (proportion of  soaring locations correctly classifed, in
green) and specifcity (proportion of flapping locations correctly classifed, in red) at different
thresholds values. The solid points represent the value of Sensitivity and Specifcity, averaged
across the ten runs of each model, at a threshold that maximize the value of the True Skill
Statistics. 
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A - Static model
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B - Dynamic model
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C - Combined model

Figure S3.3 - Variable importance. Contributions of the different variables to the static (A),
dynamic (B) and combined (C) uplift suitability models, measured in terms of mean decrease in
accuracy (left) and decrease in node impurity (right).

17 Scacco et al.



Energy landscape for soaring birds

S4 –  Uplift intensity model

Table S4.1 - Summary of the three uplift intensity models (generalized additive models).

Response: sqrt(Vertical Speed)

Static 
Uplift intensity model

Dynamic
Uplift intensity model

Combined 
Uplift intensity model

Parametric coefficients:
Estimate (C.I.)

Intercept 0.898 (0.866, 0.929) 0.765 (0.759, 0.771) 0.719 (0.688, 0.751)
Aspect unevenness 0.0001 (0.00000, 0.0001) 0.0001 (0.00000, 0.0001)
DEM unevenness 0.001 (-0.0002, 0.002) 0.001 (-0.0004, 0.002)
Slope unevenness 0.005 (0.002, 0.008) 0.005 (0.002, 0.008)
GUF 0.013 (-0.001, 0.028) 0.022 (0.008, 0.037)
CLC 1 - dumps -0.155 (-0.310, -0.0004) -0.039 (-0.190, 0.112)
CLC 2 - art. veg. areas 0.063 (0.023, 0.103) 0.055 (0.015, 0.094)
CLC 3 - arable lands -0.018 (-0.049, 0.014) -0.019 (-0.050, 0.012)
CLC 4 - perm. crops -0.023 (-0.055, 0.009) -0.016 (-0.047, 0.016)
CLC 5 - pastures -0.034 (-0.068, 0.0001) -0.028 (-0.062, 0.005)
CLC 6 - het. agr. areas -0.017 (-0.049, 0.015) -0.012 (-0.044, 0.019)
CLC 7 - forest 0.014 (-0.018, 0.046) 0.009 (-0.022, 0.041)
CLC 8 - Shrubs 0.024 (-0.008, 0.057) 0.022 (-0.011, 0.054)
CLC 10 - wet. marshes -0.050 (-0.088, -0.012) -0.026 (-0.064, 0.012)
CLC 11 - marine wet. salines 0.002 (-0.032, 0.036) 0.007 (-0.027, 0.040)
CLC 12 - rivers -0.020 (-0.070, 0.029) -0.026 (-0.075, 0.023)
CLC 13 - wat. bodies lakes -0.102 (-0.152, -0.051) -0.093 (-0.143, -0.044)
CLC 14 - coast. lagoons est. 0.060 (0.014, 0.105) 0.069 (0.024, 0.114)
CLC 15 - sea 0.006 (-0.450, 0.462) -0.004 (-0.449, 0.441)
CLC 16 - urban areas -0.013 (-0.046, 0.020) -0.017 (-0.049, 0.016)
Therm. uplift pot. 0.124 (0.119, 0.129) 0.161 (0.156, 0.166)
Orog. uplift pot. 0.042 (0.029, 0.056) 0.063 (0.049, 0.077)

Smooth terms:
F (Effective df)

s(Aspect) 4.057 (3.040) 2.080 (2.545)
s(DEM) 49.019 (6.978) 40.020 (6.901)
s(Ruggedness) 1.863 (4.443) 4.510 (4.875)
s(NDVI) 18.068 (6.710) 21.650 (4.277)
s(Latitude) 60.916 (8.881) 91.420 (8.885)

Observations 76383 78307 74946

Adjusted R2 0.032 0.032 0.083
AIC (df) 46575.00 (54.745) 49636.88 (4) 42003.95 (53.19181)

18 Scacco et al.



Energy landscape for soaring birds

A       B

Figure S4.1 - Non linear relationship between some of the environmental predictors included
as  smooth  terms  in  the  static  uplift  intensity  model  (generalized  additive  model)  and the
response variable (vertical speed). In (A) the effect of NDVI and aspect, whereas in (B) the
effect of DEM and latitude on the vertical speed. In lighter colours, combination of variables’
values that predict a higher vertical speed.
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S5 – Static energy landscape

Table 5.1 - Output of the Linear Mixed Model analysing the mean daily ODBA as a function of
the mean daily uplift suitability (as predicted by the static uplift suitability model).

Response variable: 
sqrt(Mean Daily ODBA)

Fixed effects:
Estimate (C.I.)

Intercept 3.548 (0.166)
Mean daily uplift suitability -2.252 (0.189)

Random effects:
Variance (St. Dev., Corr.)
Intercept 0.990 (0.995)
Mean daily uplift suitability 1.248 (1.117, -1.00)
Residual 0.055 (0.234)

Observations 823
Groups (Individuals) 59
AIC 46.233
AIC (null model) 114.254
ΔAIC = AIC – AICnull -68.021
Marginal R² 0.306
Conditional R² 0.426
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